domingo, 28 de abril de 2013




1. RECONOCES Y REALIZAS OPERACIONES CON DISTINTOS TIPOS DE FUNCIONES

1.1 Funciones
Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potencia xn de la variable x. En 1694 el matemático alemán Gottfried Wilhelm Leibniz utilizó el término para referirse a varios aspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello.  Dos variables X y Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes.  Los valores permitidos de X constituyen el dominio de definición de la función y los valores  que toma Y constituye su recorrido".
Una función f de A en B es una relación que le hace corresponder a cada elemento x E A uno y solo un elemento y E B, llamado imagen de x por f, que se escribe y=f (x). En símbolos, f: A à B
Es decir que para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:
Todo elemento del conjunto de partida A debe tener imagen.
La imagen de cada elemento x E A debe ser única. Es decir, ningún elemento del dominio puede tener más de una imagen.
El conjunto formado por todos los elementos de B que son imagen de algún elemento del dominio se denomina conjunto imagen o recorrido de f.
Observaciones:
En una función f: Aà B todo elemento x E A tiene una y solo una imagen y E B.
Un elemento y E B puede:
No ser imagen de ningún elemento x E A
Ser imagen de un elemento x E A
Ser imagen de varios elementos x E A.
La relación inversa f-1 de una función f puede no ser una función.

Ejemplo 1
Correspondencia entre las personas que trabajan en una oficina y su peso expresado en kilos
Conjunto X
Conjunto Y
Ángela
55
Pedro
88
Manuel
62
Adrián
88
Roberto
90


Cada persona (perteneciente al conjunto X o dominio) constituye lo que se llama la entrada o variable independiente. Cada peso (perteneciente al conjunto Y o codominio) constituye lo que se llama la salida o variable dependiente. Notemos que una misma persona no puede tener dos pesos distintos. Notemos también que es posible que dos personas diferentes tengan el mismo peso.

Con estos ejemplos vamos entendiendo la noción de función: como vemos, todos y cada uno de los elementos del primer conjunto(X) están asociados a uno, y sólo a uno, del segundo conjunto (Y). Todos y cada uno significa que no puede quedar un elemento en X sin su correspondiente elemento en Y. A uno y sólo a uno significa que a un mismo elemento en X no le pueden corresponder dos elementos distintos en Y.
Ahora podemos enunciar una definición más formal:
Una función (f) es una regla que asigna a cada elemento x de un conjunto X (dominio) exactamente un elemento, llamado f(x), de un conjunto Y (codominio).
Otra definición equivalente es: sean X e Y dos conjuntos. Una función de X en Y es una regla (o un método) que asigna un (y sólo uno) elemento en Y a cada elemento en X.
Usualmente X e Y son conjuntos de números.
Generalizando, si se tiene una función f, definida de un conjunto A en un conjunto B, se anota
         f : A -----> B  (o, usando X por A e Y por B    f : X -----> Y) o f(x) = x
Recordemos de nuevo que el primer conjunto A se conoce como dominio (Dom) de la función y B es el codominio o conjunto de llegada.
f(x) denota la imagen de x bajo f, mientras que x es la preimagen de f(x).
El rango (Rg) o recorrido (Rec) o ámbito (A) es el conjunto de todos los valores posibles de f(x) que se obtienen cuando x varía en todo el dominio de la función.

1.2 Dominio y Contradomino (RANGO)
Como ya vimos, el dominio de una función es el conjunto de valores para los cuales la función está definida; es decir,  son todos los valores que puede tomar la variable independiente (la x).
Por ejemplo la función f(x) = 3x2 – 5x está definida para todo número real (x puede ser cualquier número real). Así el dominio de esta función es el conjunto de todos los números reales.
En cambio, la función   tiene como dominio todos los valores de x para los cuales −1< x < 2, porque aunque pueda tomar cualquier valor real diferente de –2, en su definición determina en qué intervalo está comprendida.
Si el dominio no se específica, debe entenderse que el dominio incluye a todos los números reales para los cuales la función tiene sentido.
En el caso de la función  , el dominio de esta función son todos los números reales mayores o iguales a –3, ya que  x + 3 debe ser mayor o igual que cero para que exista la raíz cuadrada.
Como resumen, para determinar el dominio de una función, debemos considerar lo siguiente:
Si la función tiene radicales de índice par, el dominio está conformado por todos los números reales para los cuales la cantidad subradical sea mayor o igual a cero.
Si la función es un polinomio; una  función  de  la  forma   f(x) = a0 + a1x + a2x2 +...+ anxn (donde a0, a1, a2,..., an son constantes y nun entero no negativo), el dominio está conformado por el conjunto de todos los números reales.
Si la función es racional; esto es, si es el cociente de dos polinomios, el dominio está conformado por todos los números reales para los cuales el denominador sea diferente de cero.
El rango (recorrido o ámbito) es el conjunto formado por todas las imágenes; es decir, es el conjunto conformado por todos los valores que puede tomar la variable dependiente; estos valores están determinados además, por el dominio de la función.

1.3 Imagen

En matematicas, la imagen (conocida también como campo de valores o rango) de una funcionf \colon X \to Y \,  es el conjunto formado por todos los valores que puede llegar a tomar la función. Se puede denotar como \rm{im}(f)\,,\operatorname{Im}_f\, o bien I_f\, y formalmente está definida por:

\operatorname{Im}_f := \left\{y \in Y \; | \; \exists x \in X, \; f(x)=y\right\}

Adicionalmente, es posible hablar de la imagen de un elemento (del dominio) para hacer referencia al valor que le corresponde bajo la función. Esto es, si f:A\to B es una función, entonces la imagen del elemento a\in A es el elemento  f(a)\in B.
Ejemplo de imagen:
La imagen del conjunto X es el conjunto Y, porque todos sus valores son imagen de alguno del conjunto X. Imágenes particulares de los valores: la imagen de 1 será D, la de 2 será B, la de 3 será C y la de 4 será C también.

File:Surjection.svg


 Diferencia con el contradominio

El conjunto imagen siempre es un subconjunto del contradominio.
Es importante diferenciar el concepto de contradominio del concepto de conjunto imagen.
Si f : X\to Y es una función, al conjunto Y de valores que podría tomar la función se conoce como contradominio, mientras que el conjunto imagen consta únicamente de los valores que realmente toma.
Por ejemplo, la función f:\mathbb{R}\to\mathbb{R} \ f(x) = x^2  tiene por contradominio el conjunto de todos los números reales, pero como nunca toma realmente valores negativos, el conjunto imagen está formado únicamente por los números reales no negativos.
En general, el conjunto imagen siempre es un subconjunto del codominio, y cuando éstos coinciden, se dice que la función es suprayectiva.

1.4 Regla de Correspondencia

La regla de correspondencia que da lugar o establece la forma en que los elementos del primer conjunto se relacionan con el elemento (a los elementos, en caso de las relaciones), del segundo conjunto, puede representarse de diversas maneras. Tal como observaste en el manejo de las representaciones de las funciones.

Explícitamente mediante el empleo de un diagrama sagital o tabla; también en la grafica y la relación matemática utilizada.
La clasificación que en principio nos resulta útil para asociar formas graficas con las analíticas, incorporando el conocimiento que tenemos acerca de ello, es agrupar las funciones según sus representaciones analíticas o ecuaciones que las define.